Nd GFRalpha2, but not GFRalpha3, depends on NGF, as shown in newborn NGF/ Bax double-mutant

Nd GFRalpha2, but not GFRalpha3, depends on NGF, as shown in newborn NGF/ Bax double-mutant mice where GFRalpha1 is undetectable and GFRalpha2 expression is strongly decreased (Luo et al. 2007). Polymerase chain reaction on template synthesized by reverse transcription (RT-PCR) in sensory neuron cultures indicates that this may be a direct effect of NGF on neuronal mRNA levels. In addition, GFRalpha1- and GFRalpha2expressing cells are decreased at P2 and P10 in ret mutants by 60 and 25 , respectively (Luo et al. 2007). The results suggest that NGF signalling controls the initial expression of GFRalpha1 and GFRalpha2, whereas ret autoregulates their levels at later stages. Signals regulating GFRalpha3 expression stay to become determined. GFRalphas are expressed in fairly huge DRG neuron subpopulations General, the proportion of GFRalpha1-positive cells amongst DRG neurons is 40 0 at Captan medchemexpress lumbar levels in adult rats (Bennett et al. 1998, 2000; Kashiba et al. 1998, 2003) and 20 at thoracic levels in adult humans (Josephson et al. 2001), as analysed by ISH (Table 1). GFRalpha2positive neurons constitute 19 3 of lumbar DRG neurons in adult rats (Bennett et al. 1998, 2000; Kashiba et al. 2003) and 51 of thoracic DRG neurons in adult humans (Josephson et al. 2001). GFRalpha3-positive cells make upTable 1 GFRalpha expression in mammalian DRG. All research had been performed by in situ hybidization (FG fluoro-gold, L lumbar, T thoracic) Fomesafen supplier Species Mouse Rat Stage Neonatal Adult Level GFRa1 GFRa2 GFRa3 34 – 42 17 32 Reference Baudet et al. 2000 Bennett et al 1998 Bennett et al. 2000 Kashiba et al. 2003 Josephson et al.HumanAdultLumbar 17 22 Lumbar 41 33 L4/5 42 32 Retrograde FG labelling from sciatic nerve L4/5 50 19 T11/12 20Cell Tissue Res (2008) 333:35320 of lumbar mouse DRG (Orozco et al. 2001) and 17 42 in adult rat (Bennett et al. 2000; Orozco et al. 2001; Kashiba et al. 2003) and 32 in adult humans (Josephson et al. 2001) at lumbar and thoracic levels, respectively. In the course of mouse development mRNAs for GFRalpha1 and GFRalpha 2 have already been detected by ISH at low levels at E13 and E16 and expression is strongly enhanced at birth (Baudet et al. 2000) and for GFRalpha2 soon after birth (Luo et al. 2007). In neonatal mice, 17 and 22 of lumbar DRG neurons are positive for GFRalpha1 and GFRalpha2, respectively (Baudet et al. 2000). GFRalpha3 mRNA is expressed at low levels at E13 in most neurons and at high levels at E16 in the majority of neurons. At birth, high expression levels are found in 34 of lumbar DRG neurons. Whereas GFRalpha1-positive cells belong to all size groups (Bennett et al. 1998; Baudet et al. 2000), the majority of GFRalpha2- and GFRalpha3-positive cells are of a compact size (Bennett et al. 1998; Baudet et al. 2000; Orozco et al. 2001; Lindfors et al. 2006). In the GFRalpha3-positive neuron population, 80 and 88 are trkA-positive, 70 and 97 are CGRP-positive and 94 9 and 97 are TRPV1-positive in mouse and rat, respectively (Orozco et al. 2001; Malin et al. 2006). This population does not include large-diameter neurons in mice (Baudet et al. 2000). In contrast, only 1.5 of GFRalpha2-positive neurons in mice coexpress CGRP (Lindfors et al. 2006) and less than 20 of GFRalpha2-expressing cells are TRPV1-positive (Malin et al. 2006; Lindfors et al. 2006). This population consists of preferentially small neurons positive for peripherin, a marker for unmyelinated neurons as analysed in mice (Lindfors et al. 2006). Moreover, in rat, the vast.

Leave a Reply